

Engage.. Ignite.. Empower.. ©

Introduction ...

Nutritional Science Essentials

What do we know and use?

Carbohydrates	Proteins	Fats	Alcohol	Non-caloric Sweeteners
4 kcal / gram	4 kcal / gram	9 kcal / gram	7 kcal / gram	0.2 - 4.3 kcal / gram
10g = 40 kcal	5g = 20 kcal	3g = 27 kcal	5g = 35 kcal	Why 0 kcal?

3,500 kcal = 1 lb.

- Prudent weight loss = 1-2 lbs. per week
- Equivalent to 500 1,000 kcal daily deficits.

Factoid: Non-caloric sweeteners (e.g., Spenda[®], Truvia[®]) all contain kcal ranging between 0.2 - 4.3 kcal/g, but because their sweetening power is > 100+ times sweeter than sugar, we only use a small amount with less than 1 kcal – therefore classified as 0 kcal.

Introduction ...

Scenario #1 – how do you tackle this?

• Sample dietary intake:

Carbohydrates (g)	Protein (g)	Fats (g)	Alcohol (g)	
205g	95g	85g	12g	
x4 kcal/g = 820 kcal	x4 kcal/g = 380 kcal	x9 kcal/g = 765 kcal	x7 kcal/g = 84 kcal	
	Total: 2,	049 kcal		
Macronutrient Distribution: What Would you Propose? - Scope of Practice				
40.0%	18.5%	37.3%	4.1%	
2016 USDA Guidelines:				
45-65% of total kcal	10-35% of total kcal	20-35% of total kcal	NA	

Is this even accurate?

- Comparison of food energy v. available energy?
 - Fiber?
 - Co-efficient of digestibility?
 - Intra- and inter-person differences?

Introduction ...

Scenario #2 – Look at one meal

• How do you tackle this?

Analysis	Carbohydrates (g)	Fats (g)	Proteins (g)
Bread (2)	15g + 15g	0g	3g + 3g
Turkey	0g	3g	7g
Cheese	0g	8g	7g
Mayonnaise	0g	5g	0g
Food Totals:	30g	16g	20g
Calorie Sub-totals	$30 \ge 4 = 120 \le 120 \le 100$	$16 \ge 9 = 144 \ \text{kcal}$	20 x 4 = 80 kcal
Meal Total	344 kcal (120 + 144 + 80)))
% Contribution	$120 \div 344 = 35\%$	$144 \div 344 = 42\%$	$80 \div 344 = 23\%$

Coaching or Prescriptive?

• Quantitative or qualitative?

Should we really obsess over calories?

Calories

- By definition, energy = the capacity to do work.
- Measured in calories (kcal or food calories) kilojoules in Europe.
 0 1 kcal = 4.184 kj.
- One kcal = quantity of heat required to raise temperature of 1 Kg of water by 1° C from 14.5° C (58° F) to 15.5° C (60° F).
 - What does this mean and how are calories and heat related?

Primary method to determine energy value of food:

• Direct Calorimetry: Heat production generated from combusting food in a closed chamber.

1st Law of Thermodynamics Energy is never created and never destroyed, but passes through many forms, but ultimately degrades to heat.

Genesis Wellness Group

Energy Yield – Direct Calorimetry (Atwater Factors)

• Heat or kcal energy released from burning $1.0g (\sim 4g = 1 \text{ tsp.})$ of a food varies by food source.

Food Source	Direct Yield	Considerations	Net Yield *
Carbohydrates	Average = 4.2 kcal/g • 1g glucose = 3.75 kcal/g • 1g glycogen/starch = 4.25 kcal/g	Absorbed at ~ 97% efficiency	4.0 kcal / gram
Fats	Average = 9.4 kcal/g • 1g meat, eggs, fish = 9.5 kcal/g • 1g dairy products = 9.25 kcal/g • 1g vegetable oils = 9.3 kcal/g	Absorbed at ~ 95% efficiency	9.0 kcal / gram
Proteins	Average = 5.65 kcal/g	Absorbed at ~ 92% efficiency	4.0 kcal / gram
Alcohol	Average = 7.1 kcal/g	Absorbed at ~ 99% efficiency	7.0 kcal / gram

* Known as Ingested Energy (IE) or Gross Energy from Food – reflects food energy available from direct calorimetry (heat production).

Direct Calorimetry – Atwater Factors

• Why does protein demonstrate such a large drop?

Food Source	Direct Yield	Considerations	Net Yield
Proteins	Average = 5.65 kcal/g*	Absorbed at ~ 92% efficiency	4.0 kcal / gram

- Elements into energy pathways:
 - C, H, O energy held in H-ions
 - No need for N removed as $NH_2 = 19\%$ loss in gross energy value.

Direct Calorimetry – Atwater Factors

- What about carbohydrates?
 - For example: A food label indicates 25g of carbohydrates, but 5g of fiber.

Accuracy of Numbers?

Ingested Energy (IE) = Gross Energy in Food ----- Atwater Factors

- Minus undigested energy
- Minus bacterial fermentation (to combustible gas)
- Plus formed short-chain fatty acids (from bacteria) being absorbed.

Digestible Energy (DE)

• Minus urinary energy – energy lost from protein breakdown (urea)

Metabolizable Energy (ME)

- Minus digestive cost cost of moving nutrients across membranes and into storage.
- Minus thermogenesis cost energy from converting food to energy (ATP)

Net Metabolizable Energy (NME) ----- This is more accurate

Accuracy of Numbers?

• Appreciate the fact that the caloric value of food is decreased through digestion and absorption.

Carbohydrates	Proteins	Fats	
NME is impacted by elevation in metabolism for 40-60 min post-prandial – called Thermic Effect of Food (TEF).			
TEF = \sim 7%.	TEF = $\sim 30\%$.	TEF = $\sim 3\%$.	
• Fibrous vegetables up to 20%.			

- Animal- v. vegetable-based proteins: Animal-based can be absorbed with 40-50% more efficiency.
- Nuts and seeds: Only 68-95% of kcal absorbed v. some fiber-rich foods which increase available kcals.
- Intestinal bacteria: Can enhance food absorption by up to 150 kcal/day.

Accuracy of Numbers?

Net Metabolizable Energy (NME) reflects food energy available for bodily functions requiring energy.

- IE and NME differences for a particular food can be as large as 22%
- Mixed diets of humans overall error estimated to be $\leq 2.5\%$ for most.

Livesey's Net Metabolizable Kcal			
Carbohydrates	Proteins	Fats	
3.8 kcal / gram3.2 kcal / gram (mixed diet)8.9 kcal / gram			
Fermentable carbohydrates = 1.9 kcal / gram (usually unavailable, but bacterial action)			

Accuracy of Numbers?

Carbohydrates (g)	Protein (g)	Fats (g)	Alcohol (g)	
205g	95g	85g	12g	
$x^4 \log 1/\alpha = 820 \log 1$	$x_{1} = \frac{1}{2} \frac{1}$	$x_0 \log 1/a = 765 \log 1$	x7 kaa1/a - 84 kaa1	
$x^{4} \text{ kcal/g} = 620 \text{ kcal}$ $x^{4} \text{ kcal/g} = 560 \text{ kcal}$ $x^{9} \text{ kcal/g} = 705 \text{ kcal}$ $x^{7} \text{ kcal/g} = 64 \text{ kcal}$				
Total: 2,049 kcal				

Carbohydrates (g)	Protein (g)	Fats (g)	Alcohol (g)	
205g	95g	85g	12g	
x3.8 kcal/g = 779 kcal	x3.2 kcal/g = 304 kcal	x8.9 kcal/g = 757 kcal	x7 kcal/g = 84 kcal	
Total: 1,924 kcal				

125 kcal daily difference = \sim 13 lbs. per year

Accuracy of Numbers?

Kcal listed form foods are estimates, but can actually vary significantly – examples:

Food	Medium Apple	1 cup Carrot Sticks	6-oz. Filet Mignon	¹ / ₃ cup Chopped Nuts
Kcal	83-116 kcal	37-61 kcal	323-506 kcal	213-276 kcal

• Once a food is cooked, or chopped, or blended, the amount of energy available for digestion and absorption changes (can increase or decrease).

Food	Egg – Raw to Cooked	Steak – Raw to Grilled	Potato – Raw to Baked
Kcal	50 to 75 kcal	190 to 260 kcal	101 to 193 kcal

Accuracy v. Awareness?

24-hour Diet Recalls	Food Logs or Journals (3-day and 7-day)	Food Frequency Questionnaire
Rough quantitative estimate (24- hour) – not truly reflective. Insight into eating behaviors. 70-75% of food choices established as adults (defined by ~ 100 foods). Provides valuable insight into general food choices.	Better representation of consistent eating behaviors, but relies heavily upon accuracy. Less enthusiasm/compliance unless simplified (e.g., self- sensing, push sensors). Time – labor-intensive	Maps consistent food choices.

Self-reported data = subjective bias (Hawthorne Effect) – Moral Licensing?

Selective or forgetful memories?

- Study: 5-minutes after eating dinner, 31% of people could not remember how much bread they ate (Italian restaurant).
 - Underestimated amount by 28%; 12% denied eating any bread at all.

Heavier Individuals	Leaner Individuals
Underestimate portion sizes by $\geq 30\%$	Underestimate portion sizes by $\sim 20\%$

Estimating Energy Expenditure

O ₂ Kinetics	Heart Rate (HR)	Movement / Formulas
 Measurement of O₂ utilized (VO₂) and CO₂ produced. Measures RMR, TEF & TEPA. 	 HR correlates with VO₂ (submaximal exercise). Chest strap (electrical – Polar) v. wrist (optical – Apple).* 	 Single-plane and 3D accelerometers – track movement (and intensity). Limited to limb location.
Most accurate method	Fairly accurate	General estimate.

Wearable Technology – Do they work?

- HR variance: 1-2% up to 75% error.
 - Chest strap / eTextiles (garments) = most accurate.
 - \circ Soft tissue sensing (e.g., forearm) = good accuracy.
 - Wrist-sensing = lower accuracy (e.g., Fitbit, Apple).
- Large errors in VO_2 / kcal estimates (~25% errors).

- GPS.
- Combinations.

Exercise calories error by 25% = 100-200 kcal / day = $10\frac{1}{2}-21$ lbs. per year.

Metabolic Profiling – Qualitative (Awareness!!)

General Activity.... Not an Activity Log...

Goal is shift from a focus upon Outcomes (less control) to Behavioral Processes (more control)

Time of Day	Activity	Suggested Activities
00:00 – 06:30 am	Sleep	
06:30 – 07:30 am	Prepare for Work	5-min walk while coffee brews
07:30 – 08:30 am	Commute (drive)	
08:30 – 12:00 pm	Seated – computer	Standing work station; use a different floor for bathroom breaks
12:00 – 01:00 pm	Lunch - seated	Walk to a location to eat lunch with co-worker
01:00 – 05:00 pm	Seated – computer	Walking /standing work meetings; walk to co-worker office to
		deliver memos
05:00 – 06:00 pm	Commute (drive)	
06:00 - 07:00 pm	Gym	Shorter, intense bouts of exercise modalities (e.g., 8-min cardio,
		8-min resistance, 8-min cardio)
07:00 – 07:30 pm	Commute (drive)	
07:30 – 08:30 pm	Bathing, cooking	
08:30 – 11:30 pm	Dinner, TV, reading	Stand during commercials
11:30 - 12:00 am	Prepare for bed	

'Success may lie not in doing more, but in changing the way you do things'

Metabolic Profiling – Quantitative

Develop points system using appropriate activities (highest = what they desire to accomplish).

- Goal: Move towards '+' points (e.g., 1-hr. standing v. 1-hr. sitting = 2-point change).
- Method allows calculation of quantitative values (e.g., calories and differences one-hour sitting v. standing).
- Scoring matrix example provided below:

Activity and Intensity Equivalent	Points per Hour
Reclining / sitting activities	(-1) Exclude sleep
Standing – light activities	(+1)
Walking – 2.5 mph or equivalent	(+2)
Jogging – 5 mph / 8 km/h (12 minute mile pace) or equivalent	(+3)

Metabolic Profiling – Quantitative

Time of Day	Activity	Points
00:00 – 06:30 am	Sleep	0 points
06:30 – 07:30 am	Prepare for Work	+ 1.0 x 1 hour = + 1.0 point
07:30 – 08:30 am	Commute (drive)	- 1.0 x 1 hour = - 1.0 point
08:30 – 12:00 pm	Seated – computer	$-1.0 \ge 3\frac{1}{2}$ hours = -3.5 points
12:00 – 01:00 pm	Lunch - seated	- 1.0 x 1 hour = - 1.0 point
01:00 – 05:00 pm	Seated – computer	- 1.0 x 4 hours = - 4.0 point
05:00 – 06:00 pm	Commute (drive)	- 1.0 x 1 hour = - 1.0 point
06:00 - 07:00 pm	Gym	$+ 3.0 \times 1$ hour = $+ 3.0$ points
07:00 – 07:30 pm	Commute (drive)	- 1.0 x 1 hour = - 1.0 point
07:30 – 08:30 pm	Bathing, cooking	$+ 1.0 \times 1$ hour = $+ 1.0$ point
08:30 – 11:30 pm	Dinner, TV, reading	$-1.0 \ge 2\frac{1}{2}$ hours = -2.5 points
11:30 – 12:00 am	Prepare for bed	$+ 1.0 \text{ x}^{1/2} \text{ hour} = + \frac{1}{2} \text{ point}$
		Total: - 8.5 points

Using the MP:

- Awareness / quantifying activity.
- Daily / weekly challenges gameification.
- Interact with social support (sharing aggregated data ecosystems).

Fitness Apps – telling us calories of activity – accurate?

• Most based of Compendium of Physical Activity Tracking Guide.

Reference: Ainsworth, Barbara, et al., (2011) Prevention Research Center, University of Southern Carolina.

Activity	Kcal	Activity	Kcal
Expressed as kcal / min / kg of body weight			
Racquetball – recreational	0.12	Cycling (light, <10mph)	0.07
Kayaking – leisure	0.04	Cycling (light-mod,10-12mph)	0.10
Dancing – general	0.08	Cycling (mod,12.1-14mph)	0.14
Golf (walking + bag)	0.09	Cycling (hard, 14.1-16mph)	0.18
Running - 5mph (12min/mile)	0.12	Cycling (v. hard, 16.1-19mph)	0.21
Running - 5.5mph (11min/mile)	0.14	Cycling (stationary, 50 Watts)	0.05
Running - 6mph (10min/mile)	0.16	Cycling (stationary, 100 Watts)	0.09
Running - 6.6mph (9min/mile)	0.19	Cycling (stationary, 150 Watts)	0.12
Running - 7.5mph (8min/mile)	0.22	Cycling (stationary, 200 Watts)	0.18
Running - 8.6mph (7min/mile)	0.24	Cycling (stationary, 250 Watts)	0.22
Running - 10mph (6min/mile)	0.28	Calisthenics (push-ups, etc.)	0.08
Chopping wood	0.09	Circuit Training	0.14
Mowing lawn (walking, power)	0.08	Weight Training – light	0.05

Example: a 165 lb. (75 kg) individual running at 6 mph for 20 min:

• 0.16 kcal / min / Kg x 75 Kg = 12 kcal / min x 20 min = 240 kcal

Putting it all Together -Application

Where is your Focus?

• Do exercise calories really make a difference – NEAT is your solution.

* Assume negligible energy from protein

What Matters

- Diet plays a significant role in what you burn as a fuel, both short-term and long-term.
- Gender (hormones) play a significant role in what you burn...

	Females	Males
Rested state	Greater fat utilization, but influenced by diet* and conditioning status.	Greater glucose utilization, but influenced by diet* and conditioning status.
Fasted state	No significant difference in fuel utilization.	
Post-prandial	Women take up and store fat faster than men, but oxidize more glucose immediately relative to men	Following high-carb diets (70%), men = increased glycogen, but not women (immediate glucose utilization v. stored).
During exercise	Higher proportion of fat burned at any given intensity – spares glycogen.	Higher glycolytic capacity for anaerobic work, greater lactate accumulation = longer recoveries.
Post-exercise	EPOC + recovery: Women utilize increased proportion of carbohydrates.	EPOC + recovery: Men utilize increased proportions of fat.

What Matters

• Workout Intensity and Fuels:

	High-intensity	Lower-intensity
Workout	10 mph x 30-min (180 lbs.)	4.5 mph x 30-min (185 lbs.)
Kcal	701 kcal	339 kcal
Fuel Utilization	85-90% carbohydrates 10-15% fats	55-65% fats 35-45% carbohydrates
Fat calories	70-105 kcal	186-220 kcal
4x/week	2,800 kcal	1,356 kcal
52 weeks	41.6 lbs.	20.1 lbs.
Diet	Higher carbs (higher caloric intake?)	Lower carbs (lower caloric intake ?)
Fuel Utilization 85% Carbohydrates		Fuel Utilization 55% Fats 45% Carbohydrates
Remarks	 Carbohydrates Fats 	 Carbohydrates Fats

Thank You..!!

For Your Commitment to Excellence

Name: Fabio Comana, MA., MS.

Credentials: NASM CPT, CES & PES; ACE CPT & HC; NSCA CSCS; ACSM EP-C; CISSN.

Email: comana.fabio@gmail.com

